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Introduction
Bacterial infection, trauma, surgery, and biological stressors in 
general, induce an acute inflammatory response characterized 
by a cascade of events during which multiple cell types are 
deployed to locate pathogens, recruit cells, and eventually 
eliminate the offenders, thus restoring homeostasis. Under 
normal circumstances, this inflammatory response is self-limited, 
and once the pathogens are cleared, reparative processes begin 
and the response then abates.1,2 Oftentimes pro-inflammatory 
responses prevail or anti-inflammatory processes fail, and an 
amplified runaway inflammation turns what is normally a 
beneficial reparative process into a detrimental physiological 
state. One component of the systemic inflammatory response 
is a hypermetabolic state which is characterized by significant 
alterations in the utilization of amino acids, glucose, and fatty 
acids, leading to increased resting energy expenditure, a negative 
nitrogen balance, hyperglycemia, and hyperlactatemia. This 
results in net muscle protein catabolism with extensive amino 
acid deamination and oxidation, as well as “futile cycling” of 
substrates such as glucose and fatty acids.3

Depending on the severity of the injury and success of 
treatment, hypermetabolism and other changes associated with 
the systemic inflammatory response can progress to multiple organ 
dysfunction syndrome and sepsis, characterized by significant 
morbidity and mortality rates.4,5 Sepsis, the combination of 
infection and a systemic inflammatory response,6 is generally 
accepted to result from an amplified body-wide inflammatory 
response,7 and this disease has a substantial impact on healthcare 
expenditures with an annual incidence exceeding 750,000 cases, 
an approximately 25% in-hospital mortality rate and an average 
cost of over $20,000/case.8 Such a mortality rate is translated to 
about 215,000 deaths annually nationwide making it the 10th 
leading cause of death in United States.9,10

Despite the growing understanding of the cellular and 
molecular mechanisms of the systemic inflammatory response 
syndrome11 and the success of pre-clinical studies, not many 
effective therapies exist and few drugs are known to reduce 
mortality in clinical trials.12–21 Thus, the intricacies in translating 
basic research to clinical practice are recognized as a challenge 
impeding the successful transfer of information from the pre-
clinical to the clinical stage.22,23 This challenge is often linked to 

the growing gap between basic and clinical research,24 and there is 
growing interest to bridge the two through translational research. 
This term was coined by the American Physiological Society in an 
attempt to address complex pathophysiologies and was defined as 
the “transfer of knowledge gained from basic research to new and 
improved methods of preventing, diagnosing or treating disease as 
well as the transfer of clinical insights into hypotheses that can be 
tested and validated in the research lab.”24, 25 To promote a systematic 
integration across multiple disciplines to help bridge this gap in 
the context of inflammation following traumatic injury, the NIH 
recently funded the development of a large-scale collaborative 
glue grant research program known as Inflammation and the Host 
Response to Injury.26 Participating institutions include hospitals 
involved in clinical research studies, academic medical centers 
that perform analytical studies, and informatics and statistics 
centers that develop databases and analyze the voluminous data 
generated by the program. Furthermore, the current definition 
of NIH’s Road Map to Medical Research† clearly identifies and 
states the importance of a deeper and better understanding of 
inflammation because it is broadly implicated in many diseases 
and conditions. Integrated initiatives are identified as valuable in 
uncovering as-yet-unknown immune mechanisms and mediators 
of inflammation as well as genetic factors, environmental triggers, 
and the relationship of inflammation to disease.

Tremendous opportunities emerge in the context of systems 
biology which aims at the deconvolution of complex phenomena 
to their constituent elements and the quantification of the dynamic 
interactions between these components through the development 
of appropriate computational and mathematical models.27,28 
Systems-based approaches are assisted by the availability 
of massive amounts of data related to dynamic cellular and 
molecular-level responses providing the underlying molecular 
signatures that drive macroscopic phenotypic observations.29,30 
Such information has dramatically accelerated the development 
of in silico disease models.31 Mathematical models integrating the 
interacting elements of the unified inflammatory response offer the 
opportunity to establish a causal inference relationship through 
the manipulation of the corresponding dynamic elements.32 
Systems-based translational research considers physiological 
conditions as dynamically evolving “systems” with clearly 
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identified boundaries and rules defining their responses.33,34 As a 
result, there is a growing research effort toward the development of 
systems-based, quantitative models of the inflammatory response 
driven by the premise that such models can potentially enable the 
translation of knowledge from bench to bedside.35

Quantitative Models of Inflammation
One of the earliest mathematical models of inflammation dates 
back to the early 1980s when Lauffenburger and co-workers32 
described the local tissue inflammatory response to bacterial 
invasion. In this model, the leukocytes are continuously distributed 
while their accumulation and efficiency in localization within 
the inflammatory lesion, coupled with their phagocytic activity, 
determine the resolution of infection. This model expresses the 
dynamic interaction between the invader and a homogeneous 
leukocyte population using a two-variable model that consists 
of bacterial and leukocyte densities. An extension of this model 
replaced the single cell-target with a density number associated 
with the target population.36 In this model, the principal goal 
was to address the effect of factors such as chemotaxis, cell 
speed, and persistence on target elimination dynamics. Further 
attempts37 explored the interaction of the immune system with 
a target population (bacteria, viruses). Such analyses explored 
nonlinear interaction rules between the immune and target cells 
that determined the outcome of the immune response. Alternative 
modeling approaches placed emphasis on simulating interactions 
at the cellular level in response to an infection.38

Among the simplest, yet very informative, inflammation 
models incorporating measured quantities is the one proposed by 
Kumar et al.39 The model tracks three basic variables indicative of 
the onset, progress, and resolution of the inflammatory response, 
which include the pathogen, and pro- and late-inflammatory 
mediators. Later, it was suggested40,41 that the outcome of a 
healthy inflammatory response is determined by a balanced 
regulation in the dynamics of pro- and anti-inflammation. In 
a further refinement of this model,42 the dynamic evolution 
of effector cells (macrophages, neutrophils) is distinguished 
from the corresponding activation of effector cytokines, and 
there is emphasis on the importance of modeling crucial 
signaling pathways (e.g., complement activation). Extension of 
this research effort focused toward the development of more 
generalized inflammatory models accounting for a diverse array 
of initiating events.43,44 Models that describe the dynamics of the 
immune system in response to other infectious agents have also 
been proposed,45 characterizing the rates of various processes 
contributing to the progression of the disease and focusing on 
the control of infection by the innate and adaptive immune 
systems.46

Recently, innovative computational approaches were 
proposed to integrate community-wide in silico models using 
the framework of agent-based modeling.47,48 Such collaborative 
frameworks synthesize partial information into a unifying model 
that explores the complexity of the inflammatory response49,50 
based on the underlying principle of establishing rules among 
the actors of the biological response (agents).51 Agents represent 
entities, such as cells and cytokines, which interact through the 
activation of local rules on a spatial grid of various probabilities.52 
Such models shed useful insight on the interacting elements that 
comprise the hosts’ heterogeneity.

These mathematical models of inflammation do not 
systematically identify the elements that constitute an inflammatory 

response. The key characteristic of these models is the a priori 
postulation of certain components that are consistent with prior 
biological knowledge. This raises a very interesting question: 
what constitutes a critical component of the inflammatory 
response? This question becomes particularly relevant because 
of the tremendous progress in our ability to measure changes 
at the cellular and molecular lever53–55 that can now generate 
data at enormous rates. A critical question is how to determine, 
based on large amounts of experimental data, which components 
constitute critical state variables that capture the essence of the 
response, reminiscent of the minimal model introduced early 
by Kalman.56 In this direction, Foteinou et al.57 introduced a 
systems-level approach which, based on the analysis of temporal 
gene expression responses, systematically identifies a critical set 
of dynamic features that are considered to be the elementary 
inflammatory responses triggered by an endotoxin stimulus in 
peripheral blood leukocytes (PBLs). The elementary responses 
are incorporated into an indirect response model that propagates 
the external signal (endotoxin) through a web of intracellular 
interactions. Such a model combines essential activation 
steps related to the innate immune system (recognition of the 
pathogen-derived product by pattern recognition receptors) with 
the adaptive inflammatory responses thus offering a mechanistic 
insight of the dynamics that are triggered at the cellular level in 
PBLs in response to the endotoxin stimulus.

Discussion
A critical goal of translational research is to convert novel insights 
from basic science to clinically relevant actions related to disease 
prevention, diagnosis, and eventually enable physicians to identify 
and evaluate treatment strategies.58,43,44,49,59–61 It is important to 
realize that in silico models will never replace either biological 
or clinical research. They could, however, rationalize the 
decision-making process by establishing the range of validity 
and predictability of intervention strategies. Mathematical models 
can provide a synthetic framework that not only can reproduce 
dynamic behaviors that are in compliance with the inflammatory 
process but also can be predictive in the setting of population 
dynamics. The aforementioned models give a mechanistic insight 
about the behavior of the entire system through the dynamic 
integration of a set of key elements and, therefore, offer the 
possibility of exploring the inflammatory effect of various modes 
of intervention suggesting beneficial treatment schedules related 
to drug dose, type of intervention and administration, and patient 
selection. These quantitative representations of inflammation are 
a mechanistic extension of disease progression models62 used 
in clinical settings to evaluate the effect of a drug action based 
on the state of a biomarker that serves as the surrogate for the 
disease state. In models of inflammation, the state of the disease 
is not expressed solely based on monitoring the response of a 
variable, but rather the inflammatory trajectory is determined 
by the dynamic evolution of its elementary components and 
their dynamic interplay. Among the possible benefits of the 
translational potential of mathematical models, we identify two: 
(1) the possibility of formulating testable hypotheses regarding 
the control of the inflammatory response; (2) the possibility of 
rational design of clinical trials.

The modeling work discussed in Refs. 43, 44, and 61 illustrates 
how modeling provides significant insight in terms of hypothesis 
generation. These studies demonstrate how hypotheses can be 
formulated, for instance, that LPS may not mediate hemorrhagic 
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to formulate and test hypotheses, reconcile observations, and 
guide future experimental design. The translational potential 
of these quantitative models is coupled with research attempts 
to improve real-time diagnostics with the aim to monitor 
the immunologic state of a patient.65 Therefore, the design of 
diagnostic devices strengthens the usefulness of mathematical 
models of inflammation in that they can, potentially, predict 
the dynamics of this complex process at an individual level thus 
guiding therapeutic interventions.66–70

However, (ii) must not be overlooked. The success of 
systems-based research is that through the universal language 
of mathematics and the opportunity to formalize and quantify 
complex physiological phenomena, oftentimes with significant 
simplifications, the systems approach has managed to establish 
communication bridges between scientists from a variety of 
fields. The majority of the examples discussed in this review are 
the outgrowth of coordinated efforts of biologists, biochemists, 
clinicians, mathematicians, engineers, statisticians, and computer 
scientists. This could be one of the most significant successes of 
systems-based translational research.

There exist, however, noteworthy challenges facing systems 
modeling that need to be further explored. Modeling the signal 
flow within and between cells is a significant challenge in modern 
biology71 as it would accelerate hypothesis generation and 
testing while taking multiple cellular interactions into account. 
Although modeling the dynamic progression of a disease process 
is becoming increasingly important in drug development, as it 
provides a mathematical structure by which predictions of drug 
efficacy and safety in humans can be evaluated,72 developing 
such models would require the identification of biomarkers 
that can adequately represent the response of the system. For 
complex homeostatic mechanisms, this would imply a multitude 
of biomarkers characterizing the progression across a cascade of 
compartments. Finally, an important aspect of “translational” 
research is the development of mathematical models that would 
infer the relationship between monitored physiological variables 
and the determinants of cellular response.73 Such an effort would 
enhance our understanding of the interactions between disease 
states and putative therapeutic interactions.
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